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Abstract. Vegetation optical depth (VOD) products provide information on vegetation water content
and correlate with vegetation growth status, which are closely related to the global water and carbon
cycles. The L-band signal penetrates deeper into the vegetation canopy than the higher frequency
bands used for many previous VOD retrievals. Currently, there are only two operational L-band
sensors aboard satellites, namely the SMOS satellite launched in 2010 and the SMAP satellite launched
in 2015. The former has the limitation of a low spatial resolution of only 25 km, while the latter
has improved the resolution to 9 km but has a shorter usable time range. Due to the influence
of sensor and atmospheric conditions, as well as the observation methods of polar-orbiting satellites
(such as scan gaps and observation revisit times), the daily data provided by both satellites suffer from
varying degrees of missing data. In summary, the existing L-VOD products suffer from the defects
of missing data and coarse resolution of historical data. There is few research on filling gaps and
reconstructing 9-km long-term data for L-VOD products. To solve this problem, our study depends
on a penalized least square regression based on three-dimensional discrete cosine transform to firstly
generate the seamless global daily L-VOD products. Subsequently, the non-local filtering idea is applied
to spatiotemporal fusion between high- and low-resolution data, resulting in a global daily seamless
9-km L-VOD product from 1 January 2010 to 31 July 2021. In order to validate the quality of the
products, time series validation and simulated missing regions validation are used for the reconstructed
data. The fusion products are validated both temporally and spatially, and also compared numerically
with the original 9-km data during the overlapping period. Results show that the seamless SMOS
(SMAP) dataset is evaluated with a coefficient of determination (R?) of 0.855 (0.947), and root mean
squared error (RMSE) of 0.094 (0.073) for the simulated real missing masks. The temporal consistency
of the reconstructed daily L-VOD products is ensured with the original time-series distribution of valid
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values. The spatial information of the fusion product and the original 9-km data in the overlapping
period is basically consistent (R?: 0.926-0.958, RMSE: 0.072-0.093, MAE: 0.047-0.064). The temporal
variations between the fusion product and the original product are largely synchronized. Our dataset
can provide timely vegetation information during natural disasters (e.g., floods, droughts, and forest
fires), supporting early disaster warning and real-time response. This dataset can be downloaded at
https://doi.org/10.5281 /zenodo.13334757 (Hu et al., 2024).

Keywords: SMOS, SMAP, vegetation optical depth, seamless, global daily long-term, 9-km, spa-
tiotemporal fusion

1 Introduction

Vegetation is a key factor in the energy, water, and carbon balance of the terrestrial surface, and
it is significantly affected by climate change and human activities (Frappart et al., 2020). Remote
sensing observations are commonly used to monitor vegetation dynamics and their temporal changes
from regional to global scales. Unlike traditional optically based technologies, microwave-frequency
sensors are almost unaffected by cloud cover (Moesinger et al., 2020). Microwave radiation passing
through the vegetation canopy undergoes an extinction effect, and the extent of this attenuation can
be observed by passive or active microwave satellites and is commonly referred to as the vegetation
optical depth (VOD) (Wigneron et al., 2017). It is increasingly used for monitoring various ecological
vegetation variables, which can provide frequent observations that are independent of atmospheric
conditions and cloud pollution. Soil moisture contribution is coupled with the effects of vegetation in
terms of absorption and scattering (Liu et al., 2012; Zhao et al., 2021),and water within the vegetation
attenuates the microwave signal (Yao et al., 2024), thus VOD is directly related to the vegetation
water content (VWC) (Dou et al., 2023; Fan et al., 2019; Holtzman et al., 2021; Konings et al., 2016).
VOD has been widely used in biomass monitoring, drought early warning, phenology analysis, and
other fields (Fan et al., 2023; Ferrazzoli et al., 2002; Kumar et al., 2021; Mialon et al., 2020; Moesinger
et al., 2022; Vaglio Laurin et al., 2020; Van Dijk et al., 2013; Vreugdenhil et al., 2022; Wigneron et al.,
2020). VOD is affected by a number of factors, including density and type of vegetation and microwave
frequency. Many microwave remote sensing satellites provide VOD products in different microwave
bands (X-, Ku-, C-). However, as the frequency of the microwave signal decreases, resulting in longer
wavelengths, its ability to penetrate vegetation canopies increases (Frappart et al., 2020; Zhang et al.,
2021a). Compared to VOD products in other bands, the low-frequency microwave product L-VOD
correlates better with VWC and biomass (Brandt et al., 2018; Cui et al., 2023; Unterholzner, 2023).
Currently, only SMOS and SMAP satellites provide VOD data based on the L-band, and both are
satellites targeting the monitoring of soil moisture (SM) and VWC (Wigneron et al., 2017).

The Soil Moisture and Ocean Salinity (SMOS) mission is to monitor the brightness temperature
of microwave radiation at the earth’s surface, launched by the European Space Agency (ESA) in 2009
(Kerr et al., 2001, 2010). SMOS carries a passive microwave radiometer that can acquire data without
emitting microwave signals by using microwave signals naturally radiated from the earth’s surface.
Currently, there are three main physically based SMOS L-VOD retrieval methods (Wigneron et al.,
2021), respectively SMOS L2 (Kerr et al., 2012), SMOS L3 (Al Bitar et al., 2017), and SMOS-IC
(Fernandez-Moran et al., 2017). These algorithms are all based on the L-band Microwave Emission of
the Biosphere (L-MEB) model (Wigneron et al., 2007), which uses the Tau-Omega (7 — w) radiative
transfer equation to simulate surface microwave emission (Cui et al., 2015; Mo et al., 1982). SMOS-IC
is the latest algorithm in this series, which does not rely on auxiliary vegetation information as initial
inputs but uses the annual average of previously retrieved vegetation 7 during the retrieval process
(Li et al., 2022). The latest release of SMOS-IC v2 further improves upon this by incorporating a
first-order modeling approach (2-Stream) instead of the zero-order 7 — w model (Li et al., 2020).

The Soil Moisture Active Passive (SMAP) mission is to monitor the dynamics of soil moisture and
vegetation moisture content globally, launched by the National Aeronautics and Space Administration
(NASA) in 2015 (Entekhabi et al., 2010; Le Vine et al., 2010). SMAP carries an active microwave
radiometer that emits microwave signals and then uses the reflection and scattering data from the
signals to calculate parameters such as SM and VWC. Currently, SMAP retrieval algorithms are pri-
marily categorized into single-channel algorithms (SCA) (Jackson, 1993) and dual-channel algorithms
(DCA) (Njoku et al., 2003) based on polarization. In contrast, DCA utilizes both H and V polarization
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channels and employs a nonlinear least squares optimization process to simultaneously retrieve SM and
L-VOD (Crow et al., 2005; O’Neill et al., 2018). Due to the correlated brightness temperature obser-
vations in dual-polarization channels, which cannot independently retrieve two unknowns, Koning et
al. (Konings et al., 2016, 2017) proposed the Multi-Temporal Dual Channel Algorithm (MT-DCA) to
enhance the robustness of retrieval.

To sum up, the L-VOD retrieval algorithms for both SMOS and SMAP have reached a relatively
mature stage. Both sensors operate in fully polarised mode and have demonstrated a strong capability
in globally monitoring surface soil and vegetation characteristics. However, due to limitations such
as satellite scanning gaps and retrieval methods, the daily data provided by the two satellites are
spatially incomplete. This data missing phenomenon affects the seamless monitoring of VWC, above-
ground biomass (AGB), etc. The seamless daily L-VOD data enhances the precision and timeliness of
vegetation change monitoring, enabling the capture of short-term environmental changes and sudden
events (e.g., extreme weather and natural disasters) impacts on vegetation. Currently, most applica-
tions of VOD use multi-temporal data averaging. Incomplete VOD products are typically averaged
on monthly, quarterly, and annual scales to generate global coverage products (Olivares-Cabello et al.,
2022; Wild et al., 2022). The drawbacks of the multi-temporal data averaging method are evident. It
compromises high temporal resolution, reducing the data utilisation. Additionally, the unique spatial
distribution of daily data is overlooked, leading to the loss of dense time-series variation information.
In other words, averaging VOD data over different time scales compromises the original information
in both spatial and temporal dimensions.

In order to overcome the missing data difficulties, recent studies have proposed reconstruction
methods of other products on a global or regional scale. Yang et al. (Yang and Wang, 2023) used
the HCTSA method to extract the temporal features from surface SM time-series data, and then
reconstructed the data with the random forest model. Llamas et al. (Llamas et al., 2020) used
auxiliary data such as precipitation in combination with a multiple regression model to fill in the
blank portions of the CCI data. Zhang et al. (Zhang et al., 2021b) developed a novel spatiotemporal
partial convolutional neural network for AMSR2 soil moisture product gap-filling. Building on this
work, Zhang et al. (Zhang et al., 2022) proposed an integrated long short-term memory convolutional
neural network (LSTM-CNN), in which global daily precipitation datasets were fused into the proposed
reconstruction model to further improve gap-filling in daily soil moisture products. So far, there are
few works for L-VOD reconstruction on both global and daily scales.

In addition, SMOS satellite products are limited by coarse spatial resolution (25 km), which
cannot capture fine-scale phenological changes in surface vegetation. Although the SMAP satellite
improves spatial resolution, providing global L-VOD data at a 9 km resolution, it was launched in
2015 and therefore cannot provide historical data. To address the limitations of different sensors,
the recently released Vegetation Optical Depth Climate Archive (VODCA) version 2 (Zotta et al.,
2024) combines VOD data from multiple sensors (SSM/I, TMI, AMSR-E, WindSat, and AMSR2)
to generate a long-term VOD product. Compared to the version 1 (Myneni et al., 2015), the main
improvement is the addition of L-band products (VODCA L) based on the SMOS and SMAP missions,
which are theoretically more sensitive to the entire canopy (including branches and trunks). However,
over extended periods such as 2010-2021, the spatial resolution of the existing L-VOD data remains
limited to 25 km. Currently, there are few studies that perform spatiotemporal fusion of the L-VOD
products from the two satellites to compensate for their spatiotemporal limitations.

In summary, current VOD products from different sources suffer from data gaps and coarse resolu-
tion of historical data. Hence the need to integrate multi-temporal and multi-source L-VOD products.
Enhancing VOD quality by incorporating auxiliary data introduces more uncertainty. Independent
retrieval of VOD products from microwave observations would be a more effective way to improve
data quality. From these perspectives, our study begins with the reconstruction of missing data. Sub-
sequently, a spatiotemporal fusion model is developed to generate seamless, long-term, 9-km global
daily L-VOD products. The main contributions are below.

1. Based on the three-dimensionality (2-D spatial + time) spatiotemporal dataset, we reconstruct
the missing parts of SMOS L-VOD data from 1 January 2010 to 31 December 2017 and SMAP L-VOD
data from 1 April 2015 to 31 July 2021, filling a gap in the research field regarding global daily L-VOD
products reconstruction.

2. A spatiotemporal fusion model based on the non-local filtering approach to generate a long-
term 9-km L-VOD dataset. The fusion product is validated temporally and spatially, and numerically
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compared with the original 9-km data during the overlapping period. Based on the availability of
existing data, we ultimately obtain a global daily seamless L-VOD dataset with the spatial resolution
of 9 km for the period from 1 January 2010 to 31 July 2021.

3. The gap-filling accuracy is assessed using time series validation and simulated missing region
validation. For the fusion products, temporal and spatial verification strategies are employed and
numerical comparisons are made with the original 9-km data from the overlap period. Evaluation
indexes demonstrate that the global daily seamless L-VOD dataset shows high accuracy, reliability,
and robustness.

The structure of this remaining paper as follows. Section 2 describes the L-VOD data and auxiliary
data used in this study. Section 3 introduces the methods for gap filling and spatiotemporal fusion, as
well as the experimental setup and accuracy validation metrics. Section 4 presents the experimental
results and relevant validation results. Finally, Section 5 provides the conclusions of this study and
suggestions for future work.

2 Data description

2.1 L-VOD data

SMOS IC L-VOD dataset is published by the European Space Agency (ESA) and has a satellite
revisit period of 8 days, a spatial resolution of 25 km, and a global spatial coverage. This study uses
the latest improved version 2 of L-VOD data for the period from 1 January 2010 to 31 December 2017,
which does not require the use of the optical vegetation index as an auxiliary data to drive the model,
enhancing the independence and stability of the product. This data is derived from https://ib.remote-
sensing.inrae.fr/index.php/smos-ic-v2-product-documentation/ (Wigneron et al., 2021). Due to the
long-term advantage of SMOS L-VOD data, it is used as the low spatial resolution data for both
the reference and target periods in the spatiotemporal fusion experiments. This data participates in
constructing the baseline data and assists in generating 9-km L-VOD data for the target moments.

SMAP MT-DCA L-VOD dataset covers the global surface with a satellite revisit period of 3 days
and a spatial resolution of 9 km. This study uses the latest SMAP MT-DCA version 5 L-VOD data
released by Feldman et al. (Feldman and Entekhabi, 2019), which updates the data from 1 April
2015 to 31 July 2021. This data is derived from https://doi.org/10.5281/zenodo.5619583 (Feldman
et al., 2021). The MT-DCA algorithm combines microwave radiometer data from the SMAP satellite
and vegetation index data from MODIS, while also considering the temporal autocorrelation of VOD.
Similar to the SMOS IC algorithm, MT-DCA does not require optical auxiliary data to provide initial
VOD values due to its consideration of VOD’s temporal autocorrelation. SMAP L-VOD data has the
advantage of high spatial resolution, which is used in this study as the high-resolution baseline data in
the spatiotemporal fusion model to provide fine spatial detail information for the VOD fusion product.
A specific description of the L-VOD data is shown in Table 1.

Table 1. Description of L-VOD data used in this study

Product Source Version Temporal and spatial resolution Period
L-VOD SMOS IC V2 25 km/daily 2010.1.1-2017.12.31
L-VOD SMAP MT-DCA V5 9 km/daily 2015.4.1-2021.7.31

2.2 Auxiliary data

This study selected pixel points under different land cover types for accuracy validation. The data
is based on the MODIS MCD12C1 V061, which provides global land cover types at annual intervals
with a time span from 2001 to 2022 and a spatial resolution of 0.05° (approximately 5.6 km). This
dataset uses multiple classification schemes, including IGBP, UMD, and LALI In this study, land cover
data for 2017 and 2018 are used. The data is accessed and processed through the Google Earth Engine
platform.
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Considering the availability of the dataset, the study period for this research is from 1 January 2010
to 31 July 2021. For convenience, the original SMOS IC L-VOD product is referred to as VOD_smos,
the original SMAP MT-DCA L-VOD product as VOD_smap, the gap filling products as VOD_resmos
and VOD_resmap, respectively, and the spatiotemporal fusion product as VOD_st.

3 Methodology

3.1 Data preprocessing

For the selected VOD_smos and VOD_smap datasets, preprocessing steps such as reprojection,
anomaly handling, and resampling are required. Due to differences in geographic coverage and pro-
jection methods between SMOS and SMAP data products, reprojection is necessary. Additionally,
considering that VOD typically ranges from 0 to 1.5, with higher values often observed in densely
vegetated tropical regions, reaching up to approximately 1.2, there are occasional outliers exceeding
1.5 in specific areas like the Amazon and Congo river basins, accounting for approximately 1% of
the total (Fernandez-Moran et al., 2017; Li et al., 2022). To minimize the potential accumulation of
uncertainty in subsequent experiments caused by abnormal values, these data need to be removed.
Furthermore, some regions may have negative VOD values due to unreliable retrieval caused by sen-
sor limitations or land types such as permafrost or deserts. VOD values less than zero cannot be
explained by physical properties. Following the guidelines from Wigneron et al. for the SMOS IC
L-VOD data (https://ib.remote-sensing.inrae.fr/index.php/smos-ic-v2-product-documentation/), neg-
ative VOD values will be set to zero in this study to ensure result accuracy. Lastly, the low-resolution
product VOD_smos will be preliminarily resampled to 9 km using nearest neighbor interpolation
to maintain consistency in spatial resolution across all datasets. Our data utilize a global grid of
2000x4000 cells.

We consider that VOD has continuity over long temporal sequences but faces a significant pro-
portion of spatial data gaps. Moreover, in the spatiotemporal fusion model, higher spatial coverage of
input data, represented by a larger effective number N, leads to better spatiotemporal fusion effects.
Therefore, our study proposes initially using the DCT-PLS method to leverage spatiotemporal varia-
tion information for repairing L-VOD data from SMOS and SMAP satellites. Subsequently, seamless
data will be input into the STFM model to reconstruct historical 9-km data, aiming to maximize error
reduction and enhance product quality.

3.2 Gap filling

Given the significant spatial data gaps in the VOD_smos and VOD_smap datasets, and considering
that frequency domain signal distribution is more concentrated and contains more comprehensive
information, the discrete cosine transform (DCT) is an effective algorithm for transforming signals
into the frequency domain for computation (Wang et al., 2023). Additionally, penalized least square
(PLS) regression is a thin-plate spline smoothing method suitable for one-dimensional arrays, which
aims to balance data fidelity and the roughness of the mean function. Garcia (Garcia, 2010) has
demonstrated that DCT achieves PLS regression by expressing data as a sum of cosine functions
oscillating at different frequencies. Due to the multidimensional characteristics of DCT, DCT-based
PLS regression can be directly extended to multidimensional datasets (Wang et al., 2012). For large
spatiotemporal datasets, utilizing spatiotemporal variation information to predict missing parts is
highly effective. Furthermore, VOD data shows significant temporal and spatial correlations, and
DCT can capture this spatiotemporal correlation well. Therefore, this study uses the three-dimensional
DCT-PLS method to fill the gaps in the global daily L-VOD data. The following section will briefly
introduce the principles of the DCT-PLS algorithm for data repair:

Let x represent the spatiotemporal dataset with missing values. The solution formula for the filled
data matrix y is as follows:

P = Q72— + vy 1)

where || - || denotes the Euclidean norm. @ is a binary matrix indicating the missing values in the
original data, with the square root used for weight adjustment. V? is the Laplacian operator. A is the
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smoothness factor, which measures the smoothness of the data y. The iterative solution for y can be
transformed into the following formula:

y=DCT (G- DCT(Q - (z —y) +y)) (2)

In this context, DCT is used to transform the data from the spatial domain to the frequency domain,
where the data is then reconstructed. Finally, the inverse transform (DCT_I) is applied to convert the
reconstructed results back from the frequency domain to the spatial domain. G is a three-dimensional
filtering tensor:

1
1+ (X0 (2 — cos ulTy)2

where k,, represents the k-th element in the m-th dimension (where m = 1,2, 3), and N,,, denotes the
size of the data in the m-th dimension of the matrix x.

In DCT-PLS modeling, the selection of the smoothing parameter A is crucial. A higher value of
the smoothing parameter will result in the loss of high-frequency components. To effectively fill in the
data gaps, A should be as close to zero as possible to minimize the smoothing effect. By calculating
the normalized error between the original and reconstructed values, it can be determined whether the
model accurately captures the characteristics of the data. Thus, the smoothing parameter A can be
adjusted based on the error evaluation results to optimize model performance. The error € is defined
as follows:

®3)

G(k‘lﬁkz,k‘z) =

e
~ el v

3.3 Spatiotemporal fusion

Spatiotemporal fusion of remote sensing data is the process of integrating multi-source remote
sensing data into products that have spatiotemporal consistency and higher accuracy. Among these
methods, both transformation-based and pixel-based reconstruction methods are commonly used ap-
proaches (Belgiu and Stein, 2019; Zhu et al., 2018). Transformation-based methods include techniques
such as Fourier transform and wavelet transform (Fanelli et al., 2001; Gharbia et al., 2014). These
methods fuse data by combining transform coefficients from different sources, offering simplicity and
ease of implementation. However, they often suffer from lower accuracy and are prone to introduc-
ing noticeable artifacts in the fusion images. On the other hand, pixel-based reconstruction methods
involve weighted averaging or other operations on pixel values from different source data to achieve
fusion. This approach has become the mainstream method in current spatiotemporal fusion research
due to its ability to preserve spatial details and improve overall accuracy. Within these methods,
the spatial and temporal adaptive reflectance fusion model (STARFM) has been widely applied (Gao
et al., 2006). An improved approach to the STARFM model is used in this study.

This study aims to extend the SMAP 9-km VOD by developing a non-local filter based spatiotem-
poral fusion model (STFM) (Cheng et al., 2017). This model employs the transformation relationships
between high-resolution spatial and low-resolution temporal data over different time periods to ef-
fectively utilize the high spatiotemporal correlation in remote sensing image sequences for predicting
high spatial resolution data at the target time. For convenience, in this study, we refer to images
with high spatial resolution and low temporal resolution as high-resolution images, and conversely, as
low-resolution images, based on spatial resolution as the criterion.

As mentioned above, this experiment performs spatiotemporal fusion on the reconstructed data
VOD _resmos and VOD _resmap to obtain the VOD_st product. Assuming that the changes in VOD
are linear over a short period, the relationship between the data at different times ¢, and ¢y within a
pixel can be expressed as follows:

VOD_resmos(z, y, tx) = a(z,y, At) - VOD_resmos(z, y, to) + b(z, y, At) (5)

where (z,y) denotes a given pixel location in the low-resolution data, At = t;, — to, and a and b are
the coefficients of the linear regression model describing the change in VOD _resmos between the two
time points.
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We assume that the high- and low-resolution data obtained by different sensors in the same
spectral band exhibit similar temporal variations. Thus, the linear relationship between low-resolution
remote sensing images, as shown in Eq.(5), also applies to high-resolution remote sensing images. The
high-resolution data at time ¢ can be calculated as:

VOD_st(x,y,tx) = a(z,y, At) - VOD_resmap(z, y, to) + b(z,y, At) (6)

It should be noted that the regression coefficients are derived locally and may vary with location.
Hence, they cannot be applied globally. Additionally, the condition of the surface cover might un-
dergo significant and complex changes during the prediction period. Therefore, the STFM algorithm
incorporates a new non-local filtering method to minimize the impact of these factors on the fusion
outcome.

The non-local filtering method seeks to make full use of the highly redundant information within
the image, thus contributing to the estimation of the target pixel (Buades et al., 2005a,b; Gilboa and
Osher, 2009; Su et al., 2012). Within the search window €, the similarity between neighboring pixels
and the central pixel will influence the determination of the weights. The weight calculation method
is as follows:

W(as, i) = exp {_G- [IVOD_resmos(P(z;,y;)) — VOD_resmos(P(z,y))|| } )

C(z,y) h?

Where C(z,y) is the normalization factor, G is the Gaussian kernel, and h is the filtering parameter.
The term (z;,y;) € Q represents the coordinates of neighboring pixels within the search window, and
Pz, .y, is the non-local similarity patch centered at (x;,3;). Once the similar pixels are determined
globally, their information is used for estimating the target pixel through weighted averaging. The
final spatiotemporal fusion prediction model can be expressed as follows:

n
VOD_st(x;, ys, tk) = Z W (i, yi, to) X [a(zi, yi, At) x VOD_resmap(z;, yi, to) + bz, yi, At)]  (8)
i=1

Where n represents the number of similar pixels globally.

Since VOD _smos data is available from 1 January 2010 to the present, while VOD_smap data
covers the period from 1 April 2015 to 31 July 2021. To fill the temporal blank in high spatial
resolution L-VOD products before the launch of the SMAP satellite, we use 1 April 2015, the initial
date provided by the VOD_smap product, as the time node. The time range to be predicted by the
VOD_st product is defined as the T1 period, spanning from 1 January 2010 to 31 March 2015. To
construct the baseline data required for the spatiotemporal fusion model and considering the temporal
correlation, we extend one year beyond the fusion input period, defining the T2 period from 1 April
2015 to 1 April 2016. To validate the quality of the fusion product VOD _st, we define the remaining
period from 2 April 2016 to 31 December 2017 as the T3 period. For specific details, refer to Fig. 1.

SMOS satellite launch SMAP satellite launch

2010 2011 2012 2013 2014 2015 2016 2017
\J \J \J \J \J
T1:Predicting VOD_fusion through T2:Building T3:Quality
spatiotemporal fusion model baseline data assessment

Fig. 1. Spatiotemporal fusion experiment time segment division explanation.

Fig. 2 illustrates that the spatiotemporal fusion model requires paired high- and low-resolution
data to construct the baseline data. To achieve a more temporally correlated fusion product, we use
monthly VOD _resmos and VOD _resmap from April 2015 to April 2016 to generate monthly aver-
aged baseline data. Subsequent experiments utilize this baseline data, inputting daily low-resolution
VOD_resmos data for each corresponding month to obtain daily high-resolution spatiotemporal fusion
product VOD _st.
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T2: VOD_resmos monthly average baseline data

T2: VOD_resmap monthly average baseline data
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Fig. 2. Spatiotemporal fusion Process.
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In summary, this study first utilizes the DCT-PLS method to fill gaps in the original missing
data, obtaining the reconstructed products, the VOD_resmos and VOD_resmap. Subsequently, the
reconstructed global seamless daily datas are input into the spatiotemporal fusion model STFM, gen-
erating the 9-km VOD _st product for unreleased periods of the SMAP satellite. The main experimental
process is illustrated in Fig. 3. The accuracy validation part is detailed in Section 4.

VOD_smap  VOD_resmap

Spatiotemporal fusion
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T2:Constructing ="
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e
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Spatial and Temporal Nonlocal Filter-based Fusion Model

Fig. 3. General flow chart of the experiment.
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3.4 Experimental Setup

In this study, a three-dimensional dataset (2D spatial + time) is constructed with a monthly
time series length. The DCT-PLS method is an iterative algorithm designed to fill missing values
in multi-dimensional data. In this experiment, the number of iterations is set to 100, with the ini-
tial prediction of the original data performed using the nearest neighbor interpolation method. The
smoothing parameter (\) follows a logarithmic sequence from 1072 to 107. During the imputation
process, the algorithm gradually reduces the smoothing parameter to achieve a transition from coarse
to fine imputation.

The STFM algorithm processes data in batches, using the high- and low-resolution monthly av-
erage baseline data constructed for the T2 period, along with the daily low-resolution data for the
corresponding month at the target time. After multiple adjustments, the optimal combination of pa-
rameters for the L-VOD data is determined. Table2 describes the meaning and specific values of these
parameters.

Table 2. Parameterization of the STFM algorithm in this study

Parameters Description Values
Search window Search range of similar pixels 3
Spectral parameter Filter similar pixels 0.01

High-resolution error  High-resolution data observation error  0.005

Low-resolution error ~ Low-resolution data observation error  0.005

Filter parameters Calculate individual weights 0.15
Weight block Calculate individual weights 1

The quantitative evaluation metrics used in the experimental section of this study include five
indicators: the correlation coeficient (R), the coefficient of determination (R?), the root mean square
error (RMSE), the bias and the mean absolute error (MAE).

4 Experiment results and discussions

4.1 Gap filling
4.1.1 Reconstructed results

The gap-filling results for 1 June 2016 are illustrated in Fig. 4. We observe that the reconstructed
results not only retain the existing values of the original data but also reasonably fill the missing parts.
The filled areas show no obvious discontinuities or gaps with the surrounding data. Additionally, the
reconstruction results maintain the details of the original image, such as topographic features and
boundaries.
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Fig. 4. Comparison results of SMOS (left) and SMAP (right) L-VOD before and after reconstruction
on 1 June 2016.

39 To further investigate the detail recovery capability of the DCT-PLS model, Fig. 5 presents the
0 comparison results of magnified data in a local area. It can be seen that, whether in high-value or
1 low-value situations, the reconstruction results still exhibit reasonable spatial variations in the missing
s areas without clear boundaries.

114°W 93°W 114°W 93°W

111°E 132°E

Vi

Fig. 5. Four localized regions are selected to compare the reconstruction effect of SMOS and SMAP
in the same localized region on 1 June 2016.
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Fig. 6. Results of temporal variation in selected pixel at different missing data ratios in 2018, with
magenta representing original values, blue representing model reconstructed values, and rectangles
emphasizing some extreme value reconstruction results.

4.1.2 Time-series validation

Apart from maintaining spatial continuity as described in Section 4.1.1, temporal consistency is
also crucial for the reconstructed L-VOD products. In this section, we analyze the time series of
representative pixels with different missing proportions and different land surface types before and
after reconstruction.

Take the SMAP L-VOD data in 2018 as an example. In Fig. 6, we show three time series with
varying proportions of data gaps and their corresponding model outputs. The three pixel points are
from western Canada (52.155° N, 64.755° W), southern Russia (55.215° N, 95.355° E), and northeastern
Democratic Republic of the Congo (1.215° N, 26.325° E). In Fig. 6, the red line represents the original
values, overlaid on the blue line representing the reconstructed values. In other words, the DCT-PLS
model does not alter the original pixel values themselves, preserving the original characteristics of the
data and maintaining continuity in the reconstructed results. Notably, the boxes in Fig. 6 indicate
that the model effectively captures the extreme values present in the original dataset. These findings
suggest that the DCT-PLS model used in this study reliably predicts the missing portions.

Combining Sentinel-2 satellite imagery with MODIS MCD12C1 V061 land cover classification
data, Fig. 7 shows the temporal change results across different land cover types. Four land types
are selected for study: forest, shrubland, cropland and grassland. To maintain consistency, pixels
with approximately 52% missing data are chosen for analysis. The time series illustrates the seasonal
variations in different land types. For instance, forests and grasslands exhibit significant vegetation
changes during certain seasons, such as periods of vigorous growth and dormancy. Croplands show
distinct cyclic fluctuations in VOD, reflecting the planting and harvesting cycles of crops. Typically,
VOD is lower during the sowing season, peaks during the growth period, and decreases again after
harvest.
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variation maps of the corresponding pixels under the above surface types, respectively.

4.1.3 Simulated missing-region validation
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Fig. 8. Original and reconstructed results with simulated missing regions on 20 July 2020: (a) Original
data with four simulated missing patches; (b) Reconstructed data. The gray background represents

the ocean.
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To quantitatively analyze the performance of the DCT-PLS method in spatiotemporal data re-
construction, we design a series of experiments. Considering the current lack of site data for L-VOD
products, we simulate missing data by removing original values.

Taking the SMAP original L-VOD data from 20 July 2020 as an example, we create four simulated
square missing areas (80x80 pixel) in North America, South America, Africa, and Asia, as shown in
Fig. 8. This allows us to easily compare the reconstructed VOD areas with the original VOD areas to
validate the spatial continuity of the gaps filling products. Fig. 8(a) and Fig. 8(b) respectively depict
the original and reconstructed results of the simulated missing areas on 20 July 2020. It can be seen
that the output data are continuous within the original valid areas. In the simulated missing patches,
the spatial texture information is also continuous, without noticeable boundary reconstruction effects.

To better analyze the spatial details of the reconstructed VOD data, we magnify the results of the
four simulated regions in Fig. 8. Fig. 9 shows the detailed original and reconstructed spatial information
for the four simulated patches on 20 July 2020. It can be clearly seen that the reconstructed patches
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Fig. 9. Detailed original and reconstructed spatial information of four simulated missing patches.
The four simulated missing patches (80 x 80 pixel) are from the original SMAP L-VOD data from 20
July 2020, taken from North America, South America, Africa, and Asia.

have high consistency with the original patches.

Fig. 10 shows scatter plots of the original and reconstructed data for the four simulated regions
mentioned above. The results indicate that the VOD in the simulated missing areas has a high
reconstruction accuracy, with R? values ranging from 0.883 to 0.978. The RMSE does not exceed 0.05,
and the MAE does not exceed 0.04.
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Fig. 10. Scatter plots of the original and reconstructed data for the four simulated missing regions
on 20 July 2020.

Additionally, to better simulate the missing patterns of the original data and make the validation
results more realistic, we also create missing data by applying real missing masks from the original
data, as shown in Fig. 11. This method randomly applies the missing mask from one day to data from
other days, avoiding the influence of fixed missing data patterns on the validation results. It is suitable
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e for time series data and can simulate missing data patterns at different time points. The DCT-PLS
w0 method is then used to reconstruct the missing data, with the original values serving as the reference

w1 to compare the accuracy of the reconstruction.
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Fig. 11. Simulation real missing data on 9 September 2011: (a) original striped data, (b) simulated
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real missing mask data, (c) reconstructed result for the missing parts.

402 By simulating real missing masks, we validate the effectiveness of the DCT-PLS reconstruction
w3 method. We analyze the overlapping period of SMOS and SMAP data, and Fig. 12 shows the results of
w4 missing value reconstruction for the SMOS and SMAP L-VOD datasets for 2016 and 2017. The results
ws indicate that the proposed method performs excellently in reconstructing missing values. Specifically,
ws for SMOS L-VOD data, the R? exceeds 0.8, the RMSE is less than 0.1, and the Bias is only -0.008 and
wr -0.006, respectively. The SMAP L-VOD data, likely due to its more complete original data distribution
we  and smaller proportion of missing values, shows even better reconstruction results, with an R? of 0.948
wo and an RMSE of 0.073. These metrics indicate a high degree of consistency between the predicted and

a0 original values, with minimal errors and no significant systematic bias.
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Fig. 12. Scatter plots of the accuracy for the simulated missing parts, i.e., the accuracy assessment
results for Fig. 11 (a) and (c). Here, we take the overlapping period of SMOS and SMAP in 2016 and
2017 as examples.

4.2 Spatiotemporal Fusion
4.2.1 Comparison of VOD_st and VOD resmap values in the overlapping period

This experiment aims to use a spatiotemporal fusion model to generate 9-km L-VOD products,
making the fusion product (VOD_st) an effective substitute for the high-resolution VOD_resmap prod-
uct before its release. The closer the values of VOD_st are to VOD_resmap, the higher the quality
of the fusion product. We first validate the accuracy of VOD_st by comparing it with VOD _resmap
in the T3 period. Fig. 13 shows box plots that integrate the daily accuracy assessment results on a
monthly basis. Three different metrics ( R?, RMSE, Bias) evaluate the differences between VOD_st
and VOD_resmap. Overall, R? remains between 0.88 and 0.96, indicating a high correlation between
the fusion product and the 9-km product. Notably, the accuracy is the highest during the summer
due to the largest spatial coverage, resulting in more valid data input into the spatiotemporal fusion
model.
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Fig. 13. Box plots of R?, RMSE, and Bias for VOD_resmap and VOD_st during the T3 period. The
x-axis represents the months, and each box represents the accuracy metrics for all the days within the
current month. The shading of the boxes is divided by the median line.

This experiment also conducts multiple validations on three different time scales: daily, monthly,
and yearly. Table 3 presents representative evaluation results. The accuracy assessment covers these
three time scales as well as the four seasons, which essentially represents the quality of the fusion
product. We observe that the results during the T2 period show higher accuracy, which can be
attributed to the baseline data used in constructing the spatiotemporal fusion model being sourced
from the T2 period. Furthermore, the accuracy is highest on a global scale, aligning with the principle
of the spatiotemporal fusion model that the fusion effect improves with higher spatial coverage, i.e., a
larger effective number (N). Overall, R? consistently remains above 0.8, RMSE around 0.1, and MAE
below 0.1, indicating a high correlation between VOD_st and VOD_resmap in terms of values.

Table 3. Evaluation results of VOD _resmap and VOD_st at three time scales.

Time Scale Date Number R? RMSE MAE
2016.01.15 1064320 0.958 0.072  0.047
2016.07.15 1477263 0.948  0.075  0.052
2017.04.15 1289649 0.934  0.084  0.059
2017.10.15 1476562 0.926  0.093  0.064
2017.05 1425487 0.970 0.055 0.038
2017.11 1356799 0.959 0.070  0.046
2016 1488668 0.983 0.042  0.026
2017 1488659 0.978  0.049  0.031

daily

Monthly average

Yearly average

Considering that the input datas of the fusion model are reconstructed, some errors may be
introduced. The original daily data is closest to the real situation, so comparing it with the fusion
result can verify the authenticity and reliability of the fusion results. Fig. 14 shows the scatter density
plot between the fusion product VOD_st and the original 9-km data VOD_smap, allowing us to more
intuitively visualize the excellent correlation between the two.
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Fig. 14. Scatter density plot between VOD_st and VOD_smap, selected from mid-season data for the
corresponding season during the T3 period.

Despite the large amount of data in the model (N > 441767), the results indicate that the fu-
sion product and the original data still achieve excellent convergence, maintaining a high degree of
linear correlation. There is a clear tendency for the fusion results to underestimate higher values and
overestimate lower ones. This might be attributed to the original data handling of outliers (negative
values and values greater than 1.5). Additionally, the weight distribution during the fusion process
may lead to data smoothing, reducing data volatility and thus weakening extreme values. However,
in the high-value range of 1-1.5, VOD_st shows partial underestimation, which is considered a pos-
itive phenomenon in this study. VOD_smos and VOD _smap products use different algorithms and
have differences in their data ranges. It is believed that VOD_smap tends to overestimate data in the
high-value range. The fusion product obtained through the spatiotemporal fusion process is closer to
VOD_smos in this range, effectively complementing the two products.

Through comprehensive accuracy assessment of the fusion data, we easily observe that the fusion
data not only maximally align with the characteristics of the original observational data but also
maintain consistency with the reconstructed data in the missing regions.

4.2.2 Long-term comparison

Since the input data for the spatiotemporal fusion model are low-resolution VOD products from
the T1 period, we expect the fusion product to not only maintain high numerical consistency with
VOD_resmap but also show a synchronized temporal trend with VOD_resmos. We compute the
monthly averages of effective pixels for VOD_resmos, VOD_resmap, and VOD_st from 2010 to 2017,
analyzing their temporal variations, as shown in Fig. 15. The results indicate that from 2010 to 2017,
VOD_st shows a generally synchronized trend with VOD_resmos, demonstrating effective learning of
the temporal characteristics of the SMOS satellite product. The temporal trend lines of VOD_st and
VOD_resmap generally align, with VOD _st values falling between the original data, indicating that it
has effectively captured the numerical characteristics of both SMOS and SMAP satellites, making it a
suitable complement for VOD _resmap during missing periods.
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Fig. 15. Temporal variation of monthly averages of VOD_resmos, VOD_resmap, and VOD_st valid
pixels from 2010 to 2017. Green represents VOD _resmos, blue represents VOD_resmap, and red rep-
resents VOD _st.

4.2.3 Spatial Distribution Comparison

After analyzing the temporal characteristics of the three products, it is also necessary to discuss
the spatial distribution of VOD_st. In this experiment, VOD _resmos and VOD_st from the T1 period
in 2011 are selected for spatial distribution comparison to represent the mid-season L-VOD products,
demonstrating spatial distribution changes across different seasons. As shown in Fig. 16, corresponding
to the conclusion that VOD _st numerically exceeds VOD _resmos, it can be observed that VOD_st and
VOD_resmos exhibit similar spatial distribution patterns across different seasons. With the warming
of spring, vegetation begins to grow, especially in the polar regions where snow and ice melt, expanding
the spatial coverage of VOD. As temperatures rise in summer and autumn, the coverage area of VOD
increases, and VOD values significantly rise, particularly noticeable in summer. The consistency in
spatial distribution changes once again demonstrates the reliability of the spatiotemporal fusion results.
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Fig. 16. Comparison of spatial distribution between VOD _resmos and VOD_st, using mid-season data
from 2011 for the respective seasons.

4.2.4 Comparison of spatial details

To visually compare the spatiotemporal fusion results, Fig. 17 selects the mid-summer season of
2017 for a comparison of the three products. Due to the lack of 9-km L-VOD data from 2010 to 2015,
we use VOD _resmos from this period to correct the spatiotemporal fusion results. Therefore, VOD _st
maintains consistent spatial coverage with VOD_resmos. Additionally, because the spatiotemporal
fusion model incorporates the characteristics of the VOD_resmap baseline data, it can be observed
that VOD _st improves the underestimation seen in the original SMOS satellite product.
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Fig. 17. To visually compare the spatiotemporal fusion results, we select the mid-summer season of
2017 to compare the model inputs and outputs: (a) VOD_resmos, (b) VOD_resmap, and (c¢) VOD_st.
Based on the MODIS MCD12C1 V061 data, the red boxes in (c) are four representative regions.

We expect the VOD fusion product (VOD_st) to capture detailed information comparable to the
spatial resolution of 9 km L-VOD product from the SMAP satellite. Therefore, we further analyze
the spatial detail representation capability of VOD_st. Considering that during the T1 period, only
coarse-resolution VOD _resmos and VOD_st are available, and during the T2 period, VOD_resmos and
VOD _resmap contribute to the spatiotemporal fusion baseline data. Hence, in this experiment, we
select the mid-summer season of the T3 period to compare VOD_resmos, VOD _resmap and VOD _st,
evaluating the spatial detail quality of the fusion product. Based on MODIS MCD12C1 V061 land
cover category data, we choose four representative regions, as indicated by the red boxes in Fig. 17(c).
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Fig. 18. VOD_resmos, VOD_resmap and VOD_st in the summer season of the T3 period are selected
for comparison to evaluate the quality of spatial details of the fusion products. Based on MODIS
MCD12C1 V061 land cover category data, four representative regions are selected, as indicated by the
red boxes in Fig. 17(c).

Fig. 18 compares the spatial details of three L-VOD products. We find that the spatial de-
tails of VOD_st are significantly better than VOD_resmos and very close to VOD_resmap. This is
because VOD_st effectively learns the characteristics of the VOD_resmap baseline data through the
spatiotemporal fusion model, adequately considering the spatiotemporal correlations of VOD in the
neighborhood. For example, it captures patchy features in region 2 and high-value boundary areas in
region 4. Compared to VOD_resmap, VOD _st exhibits some gaps, primarily due to missing information
from the original coarse-resolution VOD_resmos dataset.

5 Discussion

5.1 Comparisons with time-series averaging

Currently, there is a lack of seamless daily L-VOD data. Therefore, we attempt to synthesize
monthly averages of VOD _resmos and VOD _resmap data for a comprehensive comparison. Taking
July 2015 data as an example, we consider the monthly average of the original strip data as the
benchmark for qualitative and quantitative analysis of the corresponding reconstructed results.

Fig. 19 compares the overall and local monthly average data before and after reconstruction.
We believe that the daily variations in L-VOD values are not significant. Consequently, whether the
missing data is filled or not, the overall spatial coverage remains largely consistent without noticeable
blocky patterns. We select the Black Sea region for further study due to its representative ecosystem,
which primarily consists of grasslands and croplands. Moreover, the proportion of missing data in this
area is moderate, mostly ranging from 40% to 50%. In local areas, the monthly average data after
reconstruction is smoother, almost without the striped distribution phenomenon.

Fig. 20 compares more representative regions. For SMOS data, the original data in certain regions
(such as regionl and region2) show significant stripe-like gaps or discontinuities. These issues are well
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Fig. 19. Original (top) and reconstructed (bottom) results for July 2015 SMOS VOD monthly
average. At a global scale, the overall coverage remains consistent. The red boxes highlight local
areas, indicating that the monthly average spatial variations in the reconstructed data are smoother
and free of striping.

resolved in the reconstructed data, resulting in smoother and more continuous data. For SMAP data,
the original data in region2 show significant missing blocks (white areas), where the nearby data
may have large monthly average changes due to numerous missing days. The filled data effectively
improve this situation, appearing more complete and smooth overall compared to the original data.
Overall, in all three regions, the reconstructed data show significantly better performance in local
areas, eliminating the striped distribution caused by missing original data and demonstrating a more
uniform spatial distribution.

5.2 Uncertainty analysis of the 9-km VOD products

We demonstrate the superior performance of this method in addressing VOD data gaps. With
conventional methods, the most challenging part is to fill the continuous gaps. In spatiotemporal
datasets, missing data is not necessarily consistent. It may alternate across spatial and temporal
dimensions, adding complexity to the gap-filling process. For example, a sensor failure might result
in no data being recorded during a specific period, with these gaps being spatially continuous. As a
fully three-dimensional technique, the DCT-PLS method can easily cope with data gaps of this type.
It explicitly utilizes both spatial and temporal information to predict missing values. However, while
this method shows clear advantages, it is still subject to certain limitations. The uncertainties in the
generated VOD product can be classified into two types, as detailed below.

1. The errors of original VOD product. The proposed 9-km VOD product is generated based
on the original VOD products, which contain errors due to satellite sensor imaging and retrieval
algorithms. In filling in missing data, low-frequency components are typically used to predict the
missing values because they capture the main trends in the data. However, when there is a large
amount of missing data (e.g., in tropical rainforest regions with dense vegetation), the reliability of
the filled-in high-frequency components may be reduced. It is worth noting that a significant portion
of the data gaps in this VOD dataset is caused by frozen soil, in which case the reconstructed VOD
values are physically unrealistic.

2. The selection of parameters. The statistical modeling process is controlled entirely by a single
smoothing parameter, making it straightforward to set without requiring complex model parameter
tuning. Additionally, when the smoothing parameter is small, the DCT-PLS method has the potential
to effectively fill in high-frequency components in the data. However, the choice of the smoothing
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Fig. 20. Here three regions are selected for each type of satellite product to compare the monthly
average results of original and reconstructed data under different factors.

parameter must be adjusted based on the specific characteristics of the dataset. If there are large
spatial differences in the data, using an extremely small smoothing parameter (e.g., less than 10~7)
can lead to overfitting, resulting in poor prediction performance.

In the estimation of 9-km VOD, the STFM demonstrates strong fusion performance by effectively
integrating the advantages of the original VOD products: the temporal availability of VOD_resmos
(2010-2015) and the spatial resolution of VOD_resmap (9 km). The STFM fully considers the spa-
tiotemporal correlation of VOD, and only VOD _resmos and VOD _resmap are used. This approach does
not require the VOD retrieval process or additional auxiliary data, thus minimizing potential errors
in the estimation process (Hongtao et al., 2019). Unlike traditional spatiotemporal fusion models that
only establish relationships between high- and low-resolution imagery, the STFM constructs baseline
data for corresponding months. This approach mitigates the instability in fusion results caused by
fixed baseline data, thereby enhancing reliability.

Since the data fusion is performed sequentially by month, it is essential to discuss the temporal
impact on the fusion results. Fig. 13 presents a box plot of the monthly aggregated daily accuracy
evaluation results for the T3 period. The findings indicate that accuracy is highest in summer, likely
due to the broad spatial coverage providing more valid input data for the spatiotemporal fusion model.
In contrast, accuracy decreases in winter as vegetation growth slows down due to lower temperatures
and reduced sunlight, leading to a decline in surface vegetation coverage. Additionally, the presence
of snow and frozen soil under low-temperature conditions can further interfere with accurate VOD
signal capture, exacerbating model errors and uncertainties. The R? gradually increases in spring,
particularly in April and May. It indicates that the explanatory power of the model is improving
with the gradual recovery of vegetation. In autumn, vegetation decline reduces data coverage, thereby
affecting the model’s performance. To sum up, the fusion accuracy is affected by the amount of valid
data. In the future, adjusting the approach to constructing the baseline data could reduce this impact.

6 Data availability

This dataset can be downloaded at https://doi.org/10.5281/zenodo.13334757 (Hu et al., 2024).
The global daily seamless 9-km VOD datasets from 2010 to 2021 are stored in separate folders for the
corresponding years, with each folder containing daily files in matfile format.
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7 Conclusions

In this study, aiming at the spatial incompleteness and coarse resolution of historical data, we gen-
erate a global daily seamless 9-km L-VOD product from 1 January 2010 to 31 July 2021. Considering
the spatiotemporal characteristics of the data, we begin by employing the DCT-PLS method to recon-
struct global daily seamless L-VOD data. Thereafter, we integrate the complementary spatiotemporal
information of SMOS and SMAP satellite L-VOD products by developing STFM.

Due to the lack of in situ L-VOD data, three validation strategies are employed to assess the pre-
cision of our seamless global daily 9-km products as follows: (1) time series validation, (2) simulated
missing-region validation, and (3) data comparison validation. Through quantitative and qualitative
assessments, we find that the fusion product VOD _st effectively maintains the stable long-term charac-
teristics of VOD_resmos and achieves good spatial consistency. It closely approximates VOD _resmap
numerically, thus mitigating the underestimation issues associated with SMOS satellite-derived L-VOD
products.

We also identify limitations in our study. To begin with, the lack of in situ L-VOD data limits
comprehensive accuracy validation. Additionally, SMAP MT-DCA L-VOD data is no longer updated,
making it necessary to consider the use of additional real-time data sources in future studies to improve
timeliness and accuracy. Another significant limitation is that the current level of detail in our data
products may not sufficiently support studies of local-scale forest disturbance events (e.g., droughts
and fires). The resolution constraints may lead to inaccuracies in detail processing and small-scale
event identification. Future research should consider downscaling methods to enhance L-VOD data
resolution (Zhong et al., 2024), thereby providing better support for local-scale analysis. Through
these improvements, we aim to enhance the reliability and applicability of research results to better
support forest ecosystem management and environmental conservation needs.
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